Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 685
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731977

RESUMO

Mesenchymal stem cells (MSCs) isolated from Wharton's jelly (WJ-MSCs) and adipose tissue (AD-MSCs) are alternative sources for bone marrow-derived MSCs. Owing to their multiple functions in angiogenesis, immune modulation, proliferation, migration, and nerve regeneration, MSC-derived exosomes can be applied in "cell-free cell therapy". Here, we investigated the functional protein components between the exosomes from WJ-MSCs and AD-MSCs to explain their distinct functions. Proteins of WJ-MSC and AD-MSC exosomes were collected and compared based on iTRAQ gel-free proteomics data. Results: In total, 1695 proteins were detected in exosomes. Of these, 315 were more abundant (>1.25-fold) in AD-MSC exosomes and 362 kept higher levels in WJ-MSC exosomes, including fibrinogen proteins. Pathway enrichment analysis suggested that WJ-MSC exosomes had higher potential for wound healing than AD-MSC exosomes. Therefore, we treated keratinocyte cells with exosomes and the recombinant protein of fibrinogen beta chain (FGB). It turned out that WJ-MSC exosomes better promoted keratinocyte growth and migration than AD-MSC exosomes. In addition, FGB treatment had similar results to WJ-MSC exosomes. The fact that WJ-MSC exosomes promoted keratinocyte growth and migration better than AD-MSC exosomes can be explained by their higher FGB abundance. Exploring the various components of AD-MSC and WJ-MSC exosomes can aid in their different clinical applications.


Assuntos
Movimento Celular , Proliferação de Células , Exossomos , Queratinócitos , Células-Tronco Mesenquimais , Geleia de Wharton , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo , Queratinócitos/metabolismo , Queratinócitos/citologia , Fibrinogênio/metabolismo , Proteômica/métodos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células Cultivadas , Cicatrização , Proteoma/metabolismo
2.
Stem Cell Res Ther ; 15(1): 131, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702793

RESUMO

BACKGROUND: Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) hold great therapeutic potential in regenerative medicine. Therefore, it is crucial to establish a Good Manufacturing Practice (GMP)-compliant methodology for the isolation and culture of WJ-MSCs. Through comprehensive research, encompassing laboratory-scale experiments to pilot-scale studies, we aimed to develop standardized protocols ensuring the high yield and quality of WJ-MSCs manufacturing. METHODS: Firstly, optimization of parameters for the enzymatic digestion method used to isolate WJ-MSCs was conducted. These parameters included enzyme concentrations, digestion times, seeding densities, and culture media. Additionally, a comparative analysis between the explant method and the enzymatic digestion method was performed. Subsequently, the consecutive passaging of WJ-MSCs, specifically up to passage 9, was evaluated using the optimized method. Finally, manufacturing processes were developed and scaled up, starting from laboratory-scale flask-based production and progressing to pilot-scale cell factory-based production. Furthermore, a stability study was carried out to assess the storage and use of drug products (DPs). RESULTS: The optimal parameters for the enzymatic digestion method were a concentration of 0.4 PZ U/mL Collagenase NB6 and a digestion time of 3 h, resulting in a higher yield of P0 WJ-MSCs. In addition, a positive correlation between the weight of umbilical cord tissue and the quantities of P0 WJ-MSCs has been observed. Evaluation of different concentrations of human platelet lysate revealed that 2% and 5% concentrations resulted in similar levels of cell expansion. Comparative analysis revealed that the enzymatic digestion method exhibited faster outgrowth of WJ-MSCs compared to the explant method during the initial passage. Passages 2 to 5 exhibited higher viability and proliferation ability throughout consecutive passaging. Moreover, scalable manufacturing processes from the laboratory scale to the pilot scale were successfully developed, ensuring the production of high-quality WJ-MSCs. Multiple freeze-thaw cycles of the DPs led to reduced cell viability and viable cell concentration. Subsequent thawing and dilution of the DPs resulted in a significant decrease in both metrics, especially when stored at 20-27 °C. CONCLUSION: This study offers valuable insights into optimizing the isolation and culture of WJ-MSCs. Our scalable manufacturing processes facilitate the large-scale production of high-quality WJ-MSCs. These findings contribute to the advancement of WJ-MSCs-based therapies in regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Geleia de Wharton/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Proliferação de Células , Separação Celular/métodos , Separação Celular/normas
3.
Mol Biol Rep ; 51(1): 595, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683436

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have the ability to self-renew and are multi-potent. They are a primary candidate for cell-based therapy due to their potential anti-cancer effects. The aim of this study was to evaluate the in vitro anti-leukemic effect of Wharton's Jelly-derived MSC (WJ-MSC) on the leukemic cell lines K562 and HL-60. METHODS: In this present study, WJ-MSCs were isolated from human umbilical cord. The cells were incubated according to the standard culture conditions and characterized by flow cytometry. For experiments, WJ-MSC and leukemic cells were incubated in the direct co-culture at a ratio of 1:5 (leukemia cells: WJ-MSC). HUVEC cells were used as a non-cancerous cell line model. The apoptotic effect of WJ-MSCs on the cell lines was analyzed using Annexin V/PI apoptosis assay. RESULTS: After the direct co-culture of WJ-MSCs on leukemic cell lines, we observed anti-leukemic effects by inducing apoptosis. We had two groups of determination apoptosis with and without WJ-MSCs for all cell lines. Increased apoptosis rates were observed in K562 and HL-60 cell lines, whereas the apoptosis rates in HUVEC cells were low. CONCLUSIONS: MSCs are known to inhibit the growth of tumors of both hematopoietic and non-hematopoietic origin in vitro. In our study, WJ-MSC treatment strongly inhibited the viability of HL-60 and K562 and induced apoptosis. Our results also provided new insights into the inhibition of tumor growth by WJ-MSCs in vitro. In the future, WJ-MSCs could be used to inhibit cancer cells in clinical applications.


Assuntos
Apoptose , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana , Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Células-Tronco Mesenquimais/metabolismo , Geleia de Wharton/citologia , Células K562 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células HL-60 , Cordão Umbilical/citologia , Leucemia/patologia , Leucemia/terapia , Proliferação de Células
4.
Cells ; 13(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534387

RESUMO

White matter injury (WMI) is a common neurological issue in premature-born neonates, often causing long-term disabilities. We recently demonstrated a key beneficial role of Wharton's jelly mesenchymal stromal cell-derived small extracellular vesicles (WJ-MSC-sEVs) microRNAs (miRNAs) in WMI-related processes in vitro. Here, we studied the functions of WJ-MSC-sEV miRNAs in vivo using a preclinical rat model of premature WMI. Premature WMI was induced in rat pups through inflammation and hypoxia-ischemia. Small EVs were purified from the culture supernatant of human WJ-MSCs. The capacity of WJ-MSC-sEV-derived miRNAs to decrease microglia activation and promote oligodendrocyte maturation was evaluated by knocking down (k.d) DROSHA in WJ-MSCs, releasing sEVs containing significantly less mature miRNAs. Wharton's jelly MSC-sEVs intranasally administrated 24 h upon injury reached the brain within 1 h, remained detectable for at least 24 h, significantly reduced microglial activation, and promoted oligodendrocyte maturation. The DROSHA k.d in WJ-MSCs lowered the therapeutic capabilities of sEVs in experimental premature WMI. Our results strongly indicate the relevance of miRNAs in the therapeutic abilities of WJ-MSC-sEVs in premature WMI in vivo, opening the path to clinical application.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Geleia de Wharton , Substância Branca , Humanos , Ratos , Animais , Administração Intranasal
5.
Ophthalmic Res ; 67(1): 232-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447539

RESUMO

INTRODUCTION: Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells. Recent research suggests immunological changes such as cytokine imbalance may affect its pathophysiology. This implies that immunomodulation, like that of mesenchymal cells, could be a potential therapeutic avenue for this disease. However, the effects of intravitreal injections of human Wharton's jelly-derived mesenchymal stromal cells (hWJ-MSCs) on intraocular immune response have not been assessed in ocular hypertension (OH) models. METHODS: We explored this by measuring cytokine levels and expression of other markers, such as glial fibrillary acidic protein (GFAP) and T cells, in 15 randomly divided New Zealand rabbits: G1: OH, G2: hWJ-MSCs, and G3: OH+hWJ-MSCs. We analyzed the aqueous humor (IL-6, IL-8, and TNF-α) and vitreous humor (IFN-γ, IL-10, and TGF-ß) using ELISA and flow cytometry (cell populations), as well as TCD3+, TCD3+/TCD4+, and TCD3+/TCD8+ lymphocytes, and GFAP in the retina and optic nerve through immunohistochemistry. RESULTS: We found a decrease in TNF-α, IL-6, IFN-γ, IL-10, and IL-8 in G3 compared to G1 and an increase in TGF-ß in both G2 and G3. TCD3+ retinal infiltration in all groups was primarily TCD8+ rather than TCD4+ cells, and strong GFAP expression was observed in both the retina and optic nerves in all groups. CONCLUSION: Our results suggest that cellular and humoral immune responses may play a role in glaucomatous optic neuropathy and that intravitreal hWJ-MSCs can induce an immunosuppressive environment by inhibiting proinflammatory cytokines and enhancing regulatory cytokines.


Assuntos
Citocinas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Células-Tronco Mesenquimais , Hipertensão Ocular , Geleia de Wharton , Animais , Coelhos , Geleia de Wharton/citologia , Humanos , Hipertensão Ocular/metabolismo , Citocinas/metabolismo , Humor Aquoso/metabolismo , Pressão Intraocular/fisiologia , Citometria de Fluxo , Transplante de Células-Tronco Mesenquimais/métodos , Injeções Intravítreas , Imuno-Histoquímica , Células Ganglionares da Retina/patologia , Glucocorticoides , Nervo Óptico/patologia
6.
EBioMedicine ; 102: 105060, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490102

RESUMO

BACKGROUND: In preclinical studies, the use of double allogeneic grafts has shown promising results in promoting tissue revascularization, reducing infarct size, preventing adverse remodelling and fibrosis, and ultimately enhancing cardiac function. Building upon these findings, the safety of PeriCord, an engineered tissue graft consisting of a decellularised pericardial matrix and umbilical cord Wharton's jelly mesenchymal stromal cells, was evaluated in the PERISCOPE Phase I clinical trial (NCT03798353), marking its first application in human subjects. METHODS: This was a double-blind, single-centre trial that enrolled patients with non-acute myocardial infarction eligible for surgical revascularization. Seven patients were implanted with PeriCord while five served as controls. FINDINGS: Patients who received PeriCord showed no adverse effects during post-operative phase and one-year follow-up. No significant changes in secondary outcomes, such as quality of life or cardiac function, were found in patients who received PeriCord. However, PeriCord did modulate the kinetics of circulating monocytes involved in post-infarction myocardial repair towards non-classical inflammation-resolving macrophages, as well as levels of monocyte chemoattractants and the prognostic marker Meteorin-like in plasma following treatment. INTERPRETATION: In summary, the PeriCord graft has exhibited a safe profile and notable immunomodulatory properties. Nevertheless, further research is required to fully unlock its potential as a platform for managing inflammatory-related pathologies. FUNDING: This work was supported in part by grants from MICINN (SAF2017-84324-C2-1-R); Instituto de Salud Carlos III (ICI19/00039 and Red RICORS-TERAV RD21/0017/0022, and CIBER Cardiovascular CB16/11/00403) as a part of the Plan Nacional de I + D + I, and co-funded by ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER) and AGAUR (2021-SGR-01437).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Geleia de Wharton , Humanos , Qualidade de Vida , Coração , Cordão Umbilical
7.
Methods ; 225: 62-73, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490594

RESUMO

The multipotent stem cells of our body have been largely harnessed in biotherapeutics. However, as they are derived from multiple anatomical sources, from different tissues, human mesenchymal stem cells (hMSCs) are a heterogeneous population showing ambiguity in their in vitro behavior. Intra-clonal population heterogeneity has also been identified and pre-clinical mechanistic studies suggest that these cumulatively depreciate the therapeutic effects of hMSC transplantation. Although various biomarkers identify these specific stem cell populations, recent artificial intelligence-based methods have capitalized on the cellular morphologies of hMSCs, opening a new approach to understand their attributes. A robust and rapid platform is required to accommodate and eliminate the heterogeneity observed in the cell population, to standardize the quality of hMSC therapeutics globally. Here, we report our primary findings of morphological heterogeneity observed within and across two sources of hMSCs namely, stem cells from human exfoliated deciduous teeth (SHEDs) and human Wharton jelly mesenchymal stem cells (hWJ MSCs), using real-time single-cell images generated on immunophenotyping by imaging flow cytometry (IFC). We used the ImageJ software for identification and comparison between the two types of hMSCs using statistically significant morphometric descriptors that are biologically relevant. To expand on these insights, we have further applied deep learning methods and successfully report the development of a Convolutional Neural Network-based image classifier. In our research, we introduced a machine learning methodology to streamline the entire procedure, utilizing convolutional neural networks and transfer learning for binary classification, achieving an accuracy rate of 97.54%. We have also critically discussed the challenges, comparisons between solutions and future directions of machine learning in hMSC classification in biotherapeutics.


Assuntos
Aprendizado de Máquina , Células-Tronco Mesenquimais , Análise de Célula Única , Humanos , Células-Tronco Mesenquimais/citologia , Análise de Célula Única/métodos , Imunofenotipagem/métodos , Citometria de Fluxo/métodos , Dente Decíduo/citologia , Processamento de Imagem Assistida por Computador/métodos , Geleia de Wharton/citologia , Células Cultivadas
8.
Mol Biol Rep ; 51(1): 383, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433142

RESUMO

BACKGROUND: Graphene oxide (GO) is widespread in scaffold engineering owing to its extraordinary properties such as multiple oxygen functional groups, high hydrophilicity ability and biocompatibility. It is known to promote differentiation in mesenchymal stem cells, but concomitant comparison of its modulation on the expression profiles of Wharton's jelly (WJ)-MSC surface markers, lineage differentiation, and epigenetic regulatory genes in basal and induced condition are still lacking. Unraveling the fundamental mechanisms is essential for the effective utilization of WJ-MSCs incorporated with GO in therapy. This study aims to explore the unique gene expression profiles and epigenetic characteristics of WJ-MSCs influenced by GO. METHODS AND RESULTS: The characterized GO-coated coverslip served as a substrate for culturing WJ-MSCs. In addition to investigating the impact of GO on cell proliferation and differentiation, we conducted a gene expression study using PCR array, while epigenetic control was assessed through bisulfite sequencing and Western blot analysis. Our findings indicate that the presence of GO maintained the proliferation and survival of WJ-MSCs. In the absence of induction, GO led to minor lipid and glycosaminoglycan deposition in WJ-MSCs. This was evidenced by the sustained expression of pluripotency and lineage-specific genes, demethylation at the OCT4 promoter, and a decrease in H3K9 methylation. In osteo-induced condition, the occurrence of osteogenesis appeared to be guided by BMP/TGF and ERK pathway activation, accompanied by the upregulation of osteogenic-related genes and downregulation of DNMT3b. CONCLUSIONS: GO in osteo-induced condition create a favorable microenvironment that promotes the osteogenesis of WJ-MSCs by influencing genetic and epigenetic controls. This helps in advancing our knowledge on the use of GO as priming platform and WJ-MSCs an alternate source for bone repair and regeneration.


Assuntos
Grafite , Células-Tronco Mesenquimais , Geleia de Wharton , Western Blotting , Expressão Gênica
9.
Tissue Cell ; 87: 102320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342071

RESUMO

Ischemic stroke (IS) is a neurological condition characterized by severe long-term consequences and an unfavorable prognosis for numerous patients. Despite advancements in stroke treatment, existing therapeutic approaches possess certain limitations. However, accumulating evidence suggests that mesenchymal stem/stromal cells (MSCs) hold promise as a potential therapy for various neurological disorders, including IS, owing to their advantageous properties, such as immunomodulation and tissue regeneration. Additionally, MSCs primarily exert their therapeutic effects through the release of extracellular vesicles (EVs), highlighting the significance of their paracrine activities. These EVs are small double-layered phospholipid membrane vesicles, carrying a diverse cargo of proteins, lipids, and miRNAs that enable effective cell-to-cell communication. Notably, EVs have emerged as attractive substitutes for stem cell therapy due to their reduced immunogenicity, lower tumorigenic potential, and ease of administration and handling. Hence, this review summarizes the current preclinical and clinical studies performed to investigate the safety and therapeutic potential of MSCs and their EVs derived from different sources, including bone marrow, adipose tissue, umbilical cord blood, and Wharton's jelly in IS.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Células-Tronco Mesenquimais , MicroRNAs , Geleia de Wharton , Humanos , AVC Isquêmico/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo
10.
Tissue Cell ; 87: 102318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377632

RESUMO

Diabetes is a global problem that threatens human health. Cell therapy methods using stem cells, and tissue engineering of pancreatic islets as new therapeutic approaches have increased the chances of successful diabetes treatment. In this study, to differentiate Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) into insulin-producing cells (IPCs) with improved maturity, and function, platelet-rich plasma (PRP)-Polyvinylpyrrolidone (PVP)-Polycaprolactone (PCL)/PCL scaffold was designed. The two-dimensional (2D) control group included cell culture without differentiation medium, and the experimental groups included 2D, and three-dimensional (3D) groups with pancreatic beta cell differentiation medium. WJ-MSCs-derived IPCs on PRP-PVP-PCL/PCL scaffold took round cluster morphology, the typical pancreatic islets morphology. Real-time PCR, immunocytochemistry, and flowcytometry data showed a significant increase in pancreatic marker genes in WJ-MSCs-derived IPCs on the PRP-PVP-PCL/PCL scaffold compared to the 2D-experimental group. Also, using the ELISA assay, a significant increase in the secretion of insulin, and C-peptide was measured in the WJ-MSCs-derived IPCs of the 3D-experimental group compared to the 2D experimental group, the highest amount of insulin (38 µlU/ml), and C-peptide (43 pmol/l) secretion was in the 3D experimental group, and in response to 25 mM glucose solution, which indicated a significant improvement in the functional level of the WJ-MSCs-derived IPCs in the 3D group. The results showed that the PRP-PVP-PCL/PCL scaffold can provide an appropriate microenvironment for the engineering of pancreatic islets, and the generation of IPCs.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Poliésteres , Povidona/análogos & derivados , Geleia de Wharton , Humanos , Peptídeo C , Diferenciação Celular , Células Cultivadas
11.
Biomed Mater ; 19(2)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38364284

RESUMO

Burn wounds are the most destructive and complicated type of skin or underlying soft tissue injury that are exacerbated by a prolonged inflammatory response. Several cell-based therapeutic systems through the culturing of potent stem cells on modified scaffolds have been developed to direct the burn healing challenges. In this context, a new regenerative platform based on boron (B) enriched-acellular sheep small intestine submucosa (AOSIS) scaffold was designed and used as a carrier for mesenchymal stem cells derived from Wharton's jelly (WJMSCs) aiming to promote the tissue healing in burn-induced rat models. hWJMSCs have been extracted from human extra-embryonic umbilical cord tissue. Thereafter, 96 third-degree burned Wistar male rats were divided into 4 groups. The animals that did not receive any treatment were considered as group A (control). Then, group B was treated just by AOSIS scaffold, group C was received cell-seeded AOSIS scaffold (hWJMSCs-AOSIS), and group D was covered by boron enriched-cell-AOSIS scaffold (B/hWJMSCs-AOSIS). Inflammatory factors, histopathological parameters, and the expression levels of epitheliogenic and angiogenic proteins were assessed on 5, 14 and 21 d post-wounding. Application of the B/hWJMSCs-AOSIS on full-thickness skin-burned wounds significantly reduced the volume of neutrophils and lymphocytes at day 21 post-burning, whilst the number of fibroblasts and blood vessels enhanced at this time. In addition, molecular and histological analysis of wounds over time further verified that the addition of boron promoted wound healing, with decreased inflammatory factors, stimulated vascularization, accelerated re-epithelialization, and enhanced expression levels of epitheliogenic genes. In addition, the boron incorporation amplified wound closure via increasing collagen deposition and fibroblast volume and activity. Therefore, this newly fabricated hWJMSCs/B-loaded scaffold can be used as a promising system to accelerate burn wound reconstruction through inflammatory regulation and angiogenesis stimulation.


Assuntos
Queimaduras , Células-Tronco Mesenquimais , Lesões dos Tecidos Moles , Geleia de Wharton , Ratos , Masculino , Humanos , Animais , Ovinos , Boro , Cordão Umbilical , Ratos Wistar , Cicatrização , Queimaduras/terapia , Queimaduras/metabolismo , Lesões dos Tecidos Moles/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco
12.
Biotechnol J ; 19(2): e2300381, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403461

RESUMO

Cell therapies based on multipotent mesenchymal stromal cells (MSCs) are traditionally produced using 2D culture systems and platelet lysate- or serum-containing media (SCM). Although cost-effective for single-dose autologous treatments, this approach is not suitable for larger scale manufacturing (e.g., multiple-dose autologous or allogeneic therapies with banked MSCs); automated, scalable and Good Manufacturing Practices (GMP)-compliant platforms are urgently needed. The feasibility of transitioning was evaluated from an established Wharton's jelly MSCs (WJ-MSCs) 2D production strategy to a new one with stirred-tank bioreactors (STRs). Experimental conditions included four GMP-compliant xeno- and serum-free media (XSFM) screened in 2D conditions and two GMP-grade microcarriers assessed in 0.25 L-STRs using SCM. From the screening, a XSFM was selected and compared against SCM using the best-performing microcarrier. It was observed that SCM outperformed the 2D-selected medium in STRs, reinforcing the importance of 2D-to-3D transition studies before translation into clinical production settings. It was also found that attachment efficiency and microcarrier colonization were essential to attain higher fold expansions, and were therefore defined as critical process parameters. Nevertheless, WJ-MSCs were readily expanded in STRs with both media, preserving critical quality attributes in terms of identity, viability and differentiation potency, and yielding up to 1.47 × 109 cells in a real-scale 2.4-L batch.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Técnicas de Cultura de Células , Proliferação de Células , Reatores Biológicos , Células Cultivadas , Diferenciação Celular , Meios de Cultura Livres de Soro , Cordão Umbilical
13.
Mitochondrion ; 76: 101856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408618

RESUMO

Mitochondria are important for maintaining cellular energy metabolism and regulating cellular senescence. Mitochondrial DNA (mtDNA) encodes subunits of the OXPHOS complexes which are essential for cellular respiration and energy production. Meanwhile, mtDNA variants have been associated with the pathogenesis of neurodegenerative diseases, including MELAS, for which no effective treatment has been developed. To alleviate the pathological conditions involved in mitochondrial disorders, mitochondria transfer therapy has shown promise. Wharton's jelly mesenchymal stem cells (WJMSCs) have been identified as suitable mitochondria donors for mitochondria-defective cells, wherein mitochondrial functions can be rescued. Miro1 participates in mitochondria trafficking by anchoring mitochondria to microtubules. In this study, we identified Miro1 over-expression as a factor that could help to enhance the efficiency of mitochondrial delivery. More specifically, we reveal that Miro1 over-expressed WJMSCs significantly improved intercellular communications, cell proliferation rates, and mitochondrial membrane potential, while restoring mitochondrial bioenergetics in mitochondria-defective fibroblasts. Furthermore, Miro1 over-expressed WJMSCs decreased rates of induced apoptosis and ROS production in MELAS fibroblasts; although, Miro1 over-expression did not rescue mtDNA mutation ratios nor mitochondrial biogenesis. This study presents a potentially novel therapeutic strategy for treating mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), and other diseases associated with dysfunctional mitochondria, while the pathophysiological relevance of our results should be further verified by animal models and clinical studies.


Assuntos
Células-Tronco Mesenquimais , Mitocôndrias , Geleia de Wharton , Proteínas rho de Ligação ao GTP , Humanos , Apoptose , Proliferação de Células , Células Cultivadas , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Potencial da Membrana Mitocondrial , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Geleia de Wharton/citologia
14.
J Biomed Mater Res B Appl Biomater ; 112(1): e35368, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247251

RESUMO

The effect of Wharton's jelly mesenchymal stem cells conditioned medium (WJMSCs-CM) and zinc oxide nanoparticles (ZnO-NPs) on cultured human gingival fibroblasts on various barrier membranes was investigated in this study. In this study, human gingival fibroblasts were prepared and cultured on three membranes: collagen membrane, acellular dermal matrix (ADM) with ZnO-NPs, and ADM without ZnO-NPs. WJMSCs-CM was given to the testing groups, while control groups received the same membranes without WJMSCs-CM. Following 48 and 72 h, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests were performed to assess cell survival. Cell proliferation on the membranes was also evaluated using 4',6-diamidino-2-phenylindole (DAPI) staining after 48 and 72 h. Field emission scanning electron microscopy was used to determine membrane surface structure and cell adhesion. Nanoparticles were also subjected to an energy-dispersive x-ray analysis to identify their chemical structure. Two-way analysis of variance was used to conduct the statistical analysis. The p-value ≤.05 was considered significant. When ADM-ZnO-NPs were combined with CM, fibroblast viability, and adhesion significantly differed from ADM-ZnO-NPs alone. DAPI results confirmed cell proliferation in all six groups on both experiment days. The abundance and concentrated distribution of cells during cell proliferation were found in CM-containing membranes, specifically the ADM-ZnO-NPs membrane, demonstrating the improved biocompatibility of the ADM-ZnO-NPs membrane for cell proliferation. The other groups did not significantly differ from one another. WJMSCs-CM positively affected the viability and proliferation of gingival fibroblasts, but only marginally. Under certain conditions, ZnO-NPs below a specific concentration increased the biocompatibility of the membranes.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Óxido de Zinco , Humanos , Meios de Cultivo Condicionados/farmacologia , Fibroblastos , Proliferação de Células
15.
BMC Endocr Disord ; 24(1): 6, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178017

RESUMO

BACKGROUND: Diabetic nephropathy and hepatopathy are health problems described by specific renal and hepatic structure and function disturbances. The protective effects of the stem cell secretome have been shown in several kidney and liver diseases. The current study aims to evaluate the capability of conditioned media derived from human Wharton's jelly mesenchymal stem cells (hWJ-MSCs-CM) to alleviate diabetic complications. METHODS: Twenty Sprague Dawley rats were made diabetic through injection of STZ (60 mg/kg, i.p.). At week 8, diabetic rats were divided into two groups: treated [DM + hWJ-MSCs-CM (500 µl/rat for three weeks, i.p.)] and not treated (DM). At the 11th week, three groups (control, DM, and DM + hWJ-MSCs-CM) were kept in metabolic cages, and urine was collected for 24 h. The serum samples were maintained for measuring fasting blood glucose (FBG) and kidney and liver functional analysis. The left kidney and liver parts were kept at -80 °C to assess apelin and transforming growth factor-beta (TGF-ß) expression. The right kidney, pancreas, and liver parts were used for histopathologic evaluation. RESULTS: DM was detected by higher FBG, microalbuminuria, increased albumin/creatinine ratio, and pancreas, renal, and hepatic structural disturbances. Diabetic hepatopathy was determined by increasing liver enzymes and decreasing total bilirubin. The TGF-ß gene expression was significantly upregulated in the diabetic kidney and liver tissues. Apelin gene expression was significantly downregulated in the diabetic liver tissue but did not change in kidney tissue. Administration of hWJ-MSCs-CM improved renal and hepatic functional and structural disturbances. Moreover, CM therapy significantly decreased TGF-ß expression and enhanced apelin expression in the kidney and liver tissues. CONCLUSION: Human WJ-MSCs-CM may have protective effects on diabetic renal and hepatic complications. These effects may happen through the regulation of TGF-ß and apelin signaling pathways.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Hepatopatias , Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Humanos , Masculino , Ratos , Apelina , Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/terapia , Nefropatias Diabéticas/metabolismo , Hepatopatias/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Geleia de Wharton/citologia
16.
Sci Rep ; 14(1): 560, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177376

RESUMO

Mesenchymal stem cells (MSCs) are known to facilitate angiogenesis and promote neo-vascularization via secretion of trophic factors. Here, we explored the molecular mechanism adopted by ADAMTS13 in modulating the expression of some key angiogenic markers in human umbilical cord-derived MSCs under serum-deprivation stress. Wharton's jelly MSCs (WJ-MSCs) were isolated from the perivascular region of human umbilical cords by explant culture. ADAMTS13 was upregulated at both mRNA and protein levels in WJ-MSCs under serum-deprivation stress. Correspondingly, some key angiogenic markers were also seen to be upregulated. By screening signaling pathways, p38 and JNK pathways were identified as negative and positive regulators for expression of ADAMTS13, and the angiogenic markers, respectively. Our results also indicated the Notch pathway and p53 as other probable partners modulating the expression of ADAMTS13 and the angiogenic markers. Knockdown of ADAMTS13 using siRNA led to reversal in the expression of these angiogenic markers. Further, ADAMTS13 was shown to act via the EphrinB2/EphB4 axis followed by ERK signaling to control expression of the angiogenic markers. Interestingly, stronger expression levels were noted for ADAMTS13, VEGF and PDGF under a more stringent nutrient stress condition. Thus, we highlight a novel role of ADAMTS13 in WJ-MSCs under nutrient stress condition.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Efrinas/metabolismo , Cordão Umbilical , Transdução de Sinais , Diferenciação Celular , Células Cultivadas , Proliferação de Células , Proteína ADAMTS13/metabolismo
17.
Stem Cells Dev ; 33(3-4): 89-103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38164089

RESUMO

Mesenchymal stem cells (MSCs) directly differentiate into neurons and endothelial cells after transplantation, and their secretome has considerable potential for treating brain injuries. Previous studies have suggested that the effects of MSCs priming with exposure to hypoxia, cytokines, growth factors, or chemical agents could optimize the paracrine potency and therapeutic potential of MSCs. Studies have suggested that thrombin-primed Wharton's Jelly-derived mesenchymal stem cells (Th.WJ-MSCs) significantly enhance the neuroprotective beneficial effects of naive MSCs in brain injury such as hypoxic-ischemic brain injury (HIE) and intraventricular hemorrhage (IVH). This study aimed to characterize WJ-MSCs in terms of stem cell markers, differentiation, cell proliferation, and paracrine factors by comparing naive and Th.WJ-MSCs. We demonstrated that compared with naive MSCs, Th.MSCs significantly enhanced the neuroprotective effects in vitro. Moreover, we identified differentially expressed proteins in the conditioned media of naive and Th.WJ-MSCs by liquid chromatography-tandem mass spectrometry analysis. Secretome analysis of the conditioned medium of WJ-MSCs revealed that such neuroprotective effects were mediated by paracrine effects with secretomes of Th.WJ-MSCs, and hepatocyte growth factor was identified as a key paracrine mediator. These results can be applied further in the preclinical and clinical development of effective and safe cell therapeutics for brain injuries such as HIE and IVH.


Assuntos
Lesões Encefálicas , Células-Tronco Mesenquimais , Fármacos Neuroprotetores , Fator de Transcrição STAT3 , Geleia de Wharton , Humanos , Fator de Crescimento de Hepatócito/metabolismo , Fármacos Neuroprotetores/farmacologia , Trombina/farmacologia , Trombina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Transdução de Sinais , Diferenciação Celular , Fatores Imunológicos/metabolismo , Lesões Encefálicas/metabolismo , Proliferação de Células
18.
Br Med Bull ; 149(1): 13-31, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38061765

RESUMO

INTRODUCTION: The existing treatment modalities for knee osteoarthritis (OA) do not actually address the pathology. Biological therapies, including those using material derived from perinatal tissues, represent a ground-breaking approach to alleviating the symptoms of OA of the knee. SOURCE OF DATA: Current scientific literature published in PubMed (MEDLINE), Embase and Scopus databases. Trials registered in various clinical trial databases. AREAS OF AGREEMENT: Perinatal tissues including Wharton's jelly (WJ) and associated mesenchymal stem cells (MSCs) can be used for the management of knee OA. AREAS OF CONTROVERSY: The efficacy of WJ and associated MSCs in the management of knee OA is still controversial. GROWING POINTS: The use of WJ and associated MSCs in the management of knee OA is safe and appears to be effective. AREAS TIMELY FOR DEVELOPING RESEARCH: The present published evidence suggests that WJ tissue and associated MSCs offer an encouraging alternative for the management of knee OA. The published in vitro, preclinical and clinical investigations demonstrate the therapeutic potential of WJ and promote further research in this field to provide symptomatic relief to patients suffering from OA, aiming also to regenerate the osteoarthritic hyaline cartilage, with disease-modifying effects. Future adequately powered randomized controlled trials should be undertaken to establish whether WJ is helpful in the management of OA of the knee.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite do Joelho , Geleia de Wharton , Gravidez , Feminino , Humanos , Cordão Umbilical , Osteoartrite do Joelho/terapia , Diferenciação Celular
19.
Stem Cells Transl Med ; 13(2): 101-106, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950618

RESUMO

Type 1 diabetes (T1D) is a chronic autoimmune disease associated with complications that reduce the quality of life of affected individuals and their families. The therapeutic options for T1D are limited to insulin therapy and islet transplantation; these options are not focused on preserving ß-cell function and endogenous insulin. Despite the promising outcomes observed in current clinical trials involving allogeneic Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) infusion for the management of T1D, the precise underlying mechanism of action remains to be elucidated. In this correspondence, we propose prospective mechanisms of action of WJ-MSCs that may be mediating their observed capability to preserve ß-cell function and prevent T1D progression and provide recommendations for further investigations in clinical settings. We also highlight the efficacy of WJ-MSCs for therapeutic applications in comparison to other adult MSCs. Finally, we recommend the participation of muti-centers governed by international organizations to implement guidelines for the safe practice of cell therapy and patients' welfare.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Mesenquimais , Geleia de Wharton , Adulto , Humanos , Diabetes Mellitus Tipo 1/terapia , Qualidade de Vida , Cordão Umbilical , Insulina , Diferenciação Celular , Células Cultivadas , Proliferação de Células/fisiologia
20.
Tissue Eng Regen Med ; 21(1): 171-183, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688747

RESUMO

BACKGROUND: Knee osteoarthritis (KOA) is a prevalent chronic joint disease caused by various factors. Mesenchymal stem cells (MSCs) therapy is an increasingly promising therapeutic option for osteoarthritis. However, the chronic inflammation of knee joint can severely impede the therapeutic effects of transplanted cells. Gelatin microspheres (GMs) are degradable biomaterial that have various porosities for cell adhesion and cell-cell interaction. Excellent elasticity and deformability of GMs make it an excellent injectable vehicle for cell delivery. METHODS: We created Wharton's jelly derived mesenchymal stem cells (WJMSCs)-GMs complexes and assessed the effects of GMs on cell activity, proliferation and chondrogenesis. Then, WJMSCs loaded in GMs were transplanted in the joint of osteoarthritis mice. After four weeks, joint tissue was collected for histological analysis. Overexpressing-luciferase WJMSCs were performed to explore cell retention in mice. RESULTS: In vitro experiments demonstrated that WJMSCs loaded with GMs maintained cell viability and proliferative potential. Moreover, GMs enhanced the chondrogenesis differentiation of WJMSCs while alleviated cell hypertrophy. In KOA mice model, transplantation of WJMSCs-GMs complexes promoted cartilage regeneration and cartilage matrix formation, contributing to the treatment of KOA. Compared with other groups, in WJMSCs+GMs group, there were fewer cartilage defects and with a more integrated tibia structure. Tracking results of stable-overexpressing luciferase WJMSCs demonstrated that GMs significantly extended the retention time of WJMSCs in knee joint cavity. CONCLUSION: Our results indicated that GMs facilitate WJMSCs mediated knee osteoarthritis healing in mice by promoting cartilage regeneration and prolonging cell retention. It might potentially provide an optimal strategy for the biomaterial-stem cell based therapy for knee osteoarthritis.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite do Joelho , Geleia de Wharton , Camundongos , Animais , Gelatina , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/metabolismo , Microesferas , Células-Tronco Mesenquimais/metabolismo , Materiais Biocompatíveis/farmacologia , Cartilagem , Luciferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA